

ECOLOGY & ENVIRONMENT

CIVIL SERVICES EXAMINATION 2025

Published by

MADE EASY Publications Pvt. Ltd.

Corporate Office: 44-A/4, Kalu Sarai (Near Hauz Khas Metro Station), New Delhi-110016 Contact: 011-45124660, 8860378007 E-mail: infomep@madeeasy.in Visit us at: www.madeeasypublications.org

Ecology and Environment

© Copyright, by MADE EASY Publications Pvt. Ltd.

All rights are reserved. No part of this publication may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photo-copying, recording or otherwise), without the prior written permission of the above mentioned publisher of this book.

First Edition: 2017 Second Edition: 2018 Third Edition: 2019 Revised & Updated: 2020 Fourth Edition: 2021 Fifth Edition: 2022 Sixth Edition: 2023

Seventh Edition: Nov. 2023

Contents

Ecology and Environment

PART-I: ECOLOGY & ENVIRONMENT

Chapter - 1

Basic	es of Environment2
1.1	Introduction2
1.2	Levels of Ecological Organization
	Individual3
	Population3
	Community3
	Ecosystem4
	Biome4
	Biosphere5
1.3	Habitat6
1.4	Niche6
1.5	Adaptation
1.6	Species7
	Species Formation7
	Intraspecies Variation
	Evolution8
1.7	Population
	Factors for Population Growth8
	Life History Variation9
	Population Interactions9

Chapter - 2

Ecos	ystem	11
2.1	Introduction	. 11
2.2	Components of Ecosystem	. 11
	Abiotic Component (Non-Living)	. 12
	Biotic Components (Living)	. 13
	Interactions Among Biotic and Abiotic	
	Components	. 13
2.3	Types of Ecosystem	. 13
	Natural Ecosystem	. 14
	Human Modified Ecosystems	. 20

2.4	Functions of Ecosystem	. 22
	Productivity	. 22
	Decomposition	. 22
	Energy Flow	. 22
	Nutrient Cycling	. 27
2.5	Ecological Succession	. 31
	Primary Succession and Secondary Succession	. 31
	Autogenic Succession and Allogenic Succession.	. 32
	Succession in Terrestrial Community	. 32
	Succession in Aquatic Habitat	. 32
2.6	Homeostasis of Ecosystem	. 32
2.7	Ecotone and Edge Effect	. 32
	Ecotone	. 32
	Edge Effect	. 33

PART-II: BIODIVERSITY

Biodiversity		36
3.1	Introduction	36
3.2	Levels of Biodiversity	36
	Genetic Diversity	36
	Species Diversity	36
	Ecosystem Diversity	37
3.3	Measurement of Biodiversity	37
	Richness	37
	Evenness	37
3.4	Patterns of Biodiversity	38
	Latitudinal Diversity Gradient	38
	Species-Area Relationship	38
3.5	Biodiversity Hotspots	38
	Criteria for Measuring Biodiversity Hotspots	38
	Criteria for Biodiversity Hotspot	39
3.6	Sources of Biodiversity	39
0.0	Mutation	39

	Speciation	
	Immigration40	
	Succession40	
3.7	Loss of Biodiversity	
	Causes of Biodiversity Loss40	
	Consequences of Biodiversity Loss41	
3.8	Biodiversity Conservation	
	Need to Conserve Biodiversity	
	Conservation Methods of Biodiversity41	
	Significance of Sacred Groves	
	Botanical Gardens44	
	Zoological Parks44	
	Seed Banks/Gene Banks44	
	Cryopreservation	
	Constraints in Biodiversity Conservation44	
3.9	Wetlands45	
	Importance of Wetlands 45	
	Threats to Wetlands45	
	Functions of Wetlands 46	
	Conservation of Wetlands 46	

Chapter - 4

Fau	nal Diversity	 49	
4.1	Introduction	 49	
4.2	Fauna Diversity	49	
	Invertebrates	 50	
	Vertebrates	 50	
4.3	IUCN Red List	 51	
4.4	Threatened Faunal Species	 52	

Chapter - 5

Floral Diversity57			
5.1	Introduction		
5.2	Schematic Representation57		
	Cell and Tissues not Differentiated57		
	Well Differentiated Cells and Tissues59		
5.3	Ayurvedic and Medicinal Plants61		
	Significance of Medicinal Plants61		
	Benefits of Medicinal Plants61		
	Ayurvedic Herbs/Spices & Their Medicinal Values.61		
5.4	Invasive Alien Species63		

PART-III: ENVIRONMENTAL GOVERNANCE AND CONSERVATION OF BIODIVERSITY

Chapter - 6

Con	servation of Biodiversity	67
6.1	Introduction	67
6.2	Wildlife Conservation	67
6.3	Need for Conservation Projects	67
	Implications of Mass Extinction	67
6.4	Project Tiger	68
	Tiger Reserve-Core and Buffer Strategy	68
	Tiger Task Force	69
	National Tiger Conservation Authority (NTCA)	69
	Tiger Census	69
6.5	Project Elephant	69
	Objectives	69
	Elephant Corridor	70
	Threats to Elephant Corridors	70
	Mitigation	70
	Initiatives for Protecting Elephants	71
$\boldsymbol{\mathcal{A}}$	Project RE-HAB in Assam	71
6.6	Project Lion	71
	Asiatic Lion	71
6.7	Project Snow Leopard	72
6.8	Project Cheetah	72
	Reintroduction	73
	Causes of Extinction	73
	Significance of Reintroducing Cheetahs	73
6.9	Project Hangul	74
6.10	Project Crocodile	74
	Objectives	74
	Crocodile Census - India	74
	Crocodilian Species in India	75
6.11	Project Great Indian Bustard	76
6.12	Project Dolphin	77

Envi	ronmental Governance in India	86
7.1	Introduction	
7.2	Environmental Governance	
	Meaning	
	Background	

Contents ECOLOGY AND ENVIRONMENT

7.3	Acts and Initiatives87	
	Wildlife Protection Act (WPA), 197287	
	Wild Life (Protection) Amendment Act, 202188	
	Environment Protection Act (EPA), 1986	
	Environment (Protection) Amendment Rules, 202191	ļ
	National Forest Policy 198892	1
	Schedule Tribes and Other Traditional Forest Dwellers Act, 200693	0
	National Afforestation and Eco Development Board94	0
	Compensatory Afforestation Fund Management and Planning Authority (CAMPA)94	
	Joint Forest Management (JFM)95	ç
	Social Forestry96	ç
	National Bamboo Mission	9
	Coastal Regulation Zone (CRZ)97	g
	Wetlands (Conservation and Management) Rules 2010	
	National Green Tribunal (NGT)	
	Ozone Depleting Substances Rules	ç
	Biological Diversity Act (BDA), 2002	
	National Wild Life Action Plan	9
	Comprehensive Environmental Pollution	9
	Lighting a Billion Lives	
	Eco-Mark 107	ç
	Urban Services Environmental Rating Agency 108	
	Biodiversity Conservation and Rural Livelihood Improvement Project (BCRLIP)	9
	National Clean Energy Fund108	0
	National Electric Mobility Mission Plan 109	2
	Science Express Biodiversity Special 109	
	National Plan for Conservation of Aquatic Eco-systems (NPCA)109	
	Manaroves for the Euture 109	

Chapter - 8

Environmental Organizations in India...... 111

8.1	Introduction	. 111
	Animal Welfare Board of India (AWBI)	. 111
	Central Zoo Authority (CZA)	. 112
	National Biodiversity Authority	. 112

Chapter - 9

Environmental Organizations in

the V	Norld	117
9.1	Introduction	117
9.2	UNEP	117
9.3	UNDP	118
9.4	GEF	118
	Eleventh Report of the Green Climate Fund	118
9.5	IPCC	118
9.6	International Tropic Timber Organization (ITT)	C)119
9.7	United Nations Forum on Forests (UNFF)	119
9.8	International Union for Conservation of Nature (IUCN)	120
	IUCN: Nature 2030	122
	IUCN "Himalayan Adaptation Network"	122
9.9	Tropical Forest Alliance (TFA)	122
\mathbf{M}	Objectives and Aim of the TFA	123
9.10	International Whaling Commission	123
	75 Years of IWC	123
9.11	WWF	124
	Focal Domains	124
9.12	Wetland International	124
	Key Areas of Work	124
9.13	Birdlife International	125
9.14	Conservation International (CI)	126
9.15	Funding Mechanisms for Global Environment	126
	Multilateral Channels for Climate Finance	126
	Biocarbon Fund Initiative	127
	Regional and National Channel for Funding Climate Change	127

PART-IV: ENVIRONMENTAL DEGRADATION AND POLLUTION

Envir	onmental Pollution	.130
10.1	Introduction	130
10.2	Pollution and Pollutants	130

Contents ECOLOGY AND ENVIRONMENT

10.3	Types of Pollutants 130
	Based on Nature of Disposal130
	Based on Form of Persistence130
	Based on Nature of Pollutants 130
10.4	Causes of Pollution 13

Chapter - 11

Air Pollution		133
11.1	Introduction	133
	History of Air Pollution	
	Types of Air Pollutants	133
	Major Air Pollutants and Their Impact	134
	Indoor Air Pollution	
	Smog	136
	Fly Ash	
	Control Measures for Pollution	
11.2	Air Pollution in India	
	Limitations	
	Measures Taken for Air Pollution	
	Other Developments	
	National Clean Air Programme (NCAP)	
	Comprehensive Action Plan (CAP)	
	Graded Response Action Plan (GRAP)	
11.3	Acid Rain	

Chapter - 12

Water Pollution145		
12.1	Introduction 145	
12.2	Sources of Water Pollution 146	
	Point Sources 146	
	Non-point Sources	
12.3	Types of Water Pollutants	
	Based on Origin 147	
	Based on Physical and Chemical Characteristics 147	
	Based on Nature of Degradation147	
12.4	Municipal and Industrial Wastewater 148	
	Municipal Wastewater 148	
	Industrial Wastewater 148	
12.5	Bioremediation	
	Bioremediation Techniques	
	Phytoremediation	

Genetic Engir	eering Approaches	. 152
Way Forward		. 152

Chapter - 13

Soil	Pollution	155
13.1	Introduction	155
13.2	Causes of Soil Pollution	155
	Natural Causes	155
	Anthropogenic Causes	155
13.3	Effects of Soil Pollution	157
	Health	157
	Growth of Plants	
	Soil Fertility	
	Soil Structure	158
13.4	Control of Soil Pollution	

Othe	r Types of Pollution	159
14.1	Noise Pollution	159
	Sources	159
	Effects of Noise Pollution	159
	Prevention and Control Measures	159
14.2	Thermal Pollution	
	Causes	
	Effects	
	Control Measures	
	Potential uses of Thermal Pollution	160
14.3	Nuclear/Radiation Pollution	
	Causes	162
	Effects	
	Control Measures	
	Nuclear Hazard	
	Nuclear Waste	162
14.4	Marine Pollution	163
	Causes of Marine Pollution	163
	Standard Criterias for Pollution Assay in	
	Marine Ecosystem	165
	Consequences of Marine Pollution	
	Measures to Tackle Marine Pollution	

14.5	Solid Waste 167
	Solid Waste Disposal167
	Problems of Unscientific Municipal Solid Waste Disposal
	Categorization of the Solid Waste 168
	Types of Solid Wastes 168
	Harmful Effects of Solid Waste 170
	Disposal of Solid Waste 170
	Solid Waste Management 171
14.6	Plastic Pollution 172
	Plastic Waste 173
	Sources of Plastic Pollution 174
	Impact of Plastic Pollution 175
	Preventive Measures for Plastic Pollution 175
	Guidelines on EPR for Plastic Packaging 175
	Prakriti & Green Initiatives for Effective Plastic
	Waste Management 175
14.7	E-Waste 176
	Constituents and Effect of E-Wastes 176
	E-Waste in India 177
	Significance of E-waste Rules
14.8	Solar Waste 179

Chapter - 15

Ocean Acidification		183
15.1	Introduction	183
15.2	Causes	184
15.3	Impact	184
	On Marine Organisms and Ecosystems	184
	On Human Societies	185
15.4	Suggestions	185
15.5	Conclusion	185

Chapter - 16

Ozone Depletion		
16.1	Ozone	187
	Formation	187
	Ozone Layer	187
	Role of Ozone in the Atmosphere	188

16.2	Ozone Layer Depletion	188
	Causes	188
	Ozone Depleting Substances	188
	Role of Polar Stratospheric Cloud	. 189
	Ozone Depletion in Antarctica	. 189
	Ozone Depletion in the Arctic	. 190
	Effects of Ozone Depletion	190
16.3	Global Efforts to Reduce Ozone Depletion	191
	Vienna Convention and Montreal Protocol	. 191
	Kigali Amendment to Montreal Protocol	. 191
16.4	Recent Concerns	192
16.5	India and Ozone Depletion	192
16.6	Conclusion	192

PART-V: CLIMATE CHANGE

Clima	ate Change	194
17.1	Introduction	194
17.2	Evidences of Climate Change	194
	Atmospheric Evidences	194
	Hydrospheric Evidences	194
	Cryospheric Evidences	194
17.3	Causes of Climate Change	194
	Natural Causes	194
	Human Causes	195
17.4	Climate Forcings	195
17.5	Green House Effect	197
	Green House Gases	197
	Steps taken to Reduce Carbon Footprint	
	Global Warming	
17.6	Impacts of Climate Change	
	On Agriculture and Food Security	
	On Water Resources	
	On Rise in Sea Levels	
	On Ecosystem and Biodiversity	
	On Health	
17.7	Conclusion	

Chapter - 18

India	and Climate Change	206
18.1	Introduction	206
18.2	Observed Changes	206
	Receding Glaciers	206
	Intensified Summer	206
	General Warming	206
	Unequal Seasonal Rains	206
	Increasing Extreme Rainfall Events	206
18.3	National Greenhouse Gas Inventory	207
18.4	Mitigation Strategies	207
	Clean and Efficient Energy System	207
	National Mission for Enhanced Energy Efficiency	209
	Developing Climate Resilient Urban Centers	209
	Promoting Waste to Wealth Conversion	210
	Safe, Smart and Sustainable Green	
	Iransportation Network	.210
	Planned Afforestation	.212
	Abatement of Pollution	.212
	Change	213
	Contribution of Private Sector to Combat	
	Climate Change	213
18.5	Adaptation Strategies	214
	Agriculture	214
	Water	214
	Health	215
	Coastal Regions and Islands	215
	Disaster Management	215
	Protecting Biodiversity and Himalayan Ecosystem	n216
	Knowledge Management and Capacity Building	216
18.6	India's Intended Nationally Determined Contribution (INDCs)	216
18.7	National Communication	220
18.8	Green Building and GRIHA	221
	Objectives of Green Building	221
	Green Building Rating System	222
	Green Rating for Integrated Habitat Assessment (GRIHA)	. 222
	Other Green Building Rating System in India	223

18.9	National Initiative on Climate Resilient	
	Agriculture (NICRA)	223
	Objective	223
	Components	223
	Features	223
	Outcomes	224
18.10	Bse-Greenex	224
18.11	India's Climate Change Finance Instruments	224
	National Funds	224
	Other Fiscal Instruments and Incentives	225
	External Cooperation	225
18.12	Emissions Intensity	225
18.13	Conclusion	226

Chapter - 19

itig	ation Strategies	228
.1	Introduction	228
.2	Approach to Mitigation	228
.3	Mitigation Strategies	229
	Carbon Sequestration/ Carbon Capture and	
	Storage (CCS)	229
	Carbon Sink	230
	Green Carbon	230
	Blue Carbon	230
	International Cooperation	231
	Carbon Credit	231
	Carbon Trading	232
	Carbon Offsetting	232
	Carbon Tax	233
	Geo-engineering	233
	itig 0.1 0.2 0.3	itigation Strategies 1 Introduction 2 Approach to Mitigation 3 Mitigation Strategies Carbon Sequestration/ Carbon Capture and Storage (CCS) Carbon Sink Green Carbon Blue Carbon International Cooperation Carbon Trading Carbon Offsetting Carbon Tax Geo-engineering

Chapter - 20

Environmental Conventions......238

20.1	UN Conference on Environment and	
	Development	238
	Agenda 21	238
	Rio Declaration on Environment and Development	239
	Statement of Forest Principles	239
	The United Nations Framework Convention on Climate Change (UNFCCC)	240
	UN Convention on Biological Diversity	249

Contents ECOLOGY AND ENVIRONMENT

20.2	Antarctic Treaty	251	2
	Protocol on Environmental Protection to the Antarctic Treaty	252	
	Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR)	253	
20.3	Conventions Against Marine Pollution	253	2
	International Convention for the Prevention of Pollution from Ships (MARPOL)	253	
	International Convention on Civil Liability for Oil Pollution Damage (CLC)	254	
20.4	Biopiracy and Bioprospecting	254	2
	Biopiracy	254	
	Bioprospecting	256	
20.5	Traditional Knowledge	256	
	Traditional Knowledge under Indian Constitution.	257	2
20.6	Ramsar Convention	257	2
	Convention	257	
	Pillars of Convention	258	
	Montreux Record	258	
	Ramsar Sites	258	
20.7	Cites	258	
	Objectives	258	
	Limitations	259	
20.8	Traffic	259	
	Functions of Traffic	259	
20.9	Convention on Conservation of Migratory		
	Species (CMS)	259	
	Key Elements	259	
	Objectives	260	
20.10	Coalition Against Wildlife Trafficking	260	
	Aims	260	
20.11	Tiger Initiatives	260	
	Global Tiger Forum	260	
	Global Tiger Initiative	261	2
20.12	Gorilla Agreement	261	-
	Species Under Gorilla Agreement	262	-
	Action Plans	262	
20.13	Bat Agreement	262	4
20.14	The Economics of Ecosystems and		4
	Biodiversity (TEEB)	262	2
	TEEB for Vultures	263	
	TEEB and India	263	

20.15	REDD and REDD+	263
	REDD	263
	Step towards REDD+	263
20.16	National Greenhouse Gas Inventories Programme (NGGIP)	265
20.17	UN Convention to Combat Desertification (UNCCD)	265
	Land Degradation Neutrality	265
	15th COP to United Nations Convention to Combat Desertification (UNCCD)	266
20.18	Stockholm Convention on Persistent Organic Pollutants (POPs)	266
	India and Stockholm	267
	Stockholm and Endosulfan	267
20.19	Basel Convention on Hazardous Wastes	267
20.20	Rotterdam Convention for Certain Hazardous Chemicals and Pesticides	267
	Mechanisms	268
	Impacts of the Rotterdam Convention	268
20.21	Vienna Convention for the Protection of the Ozone Layer	269
	Montreal Protocol on Substances that Deplete the Ozone Layer	269
	Kigali Agreement	270
20.22	Globally Important Agricultural Heritage Systems (GIAHS)	271
	Benefits of GIAHS in Indian Sites	271
	GIAHS Sites in India	271

PART-VI: SUSTAINABLE DEVELOPMENT & ENVIRONMENTAL IMPACT ASSESSMENT

Susta	ainable Development	276
21.1	Introduction	
21.2	Meaning	
21.3	Need and Importance	
21.4	Principles	279
21.5	Components	
21.6	Towards Green Economy	
21.7	Millennium Development Goals (MDGs)	
	MDGs and India	
	Criticism of MDGs	

Contents ECOLOGY AND ENVIRONMENT

21.8	Sustainable Development Goals (SDGs)	33
	SDG Goals28	33
	India and Sustainable Development Goals	33
	Progress Made Towards Achieving SDG Goals 28	34
	State-Level Initiatives on SDGs	36
21.9	Environmental Kuznets Curve	37
	Justification for Kuznets Curve	37
	Limitations of Kuznets Curve	38
21.10	Environment Development Trade-off	38
21.11	Conclusion	39

Chapter - 22

Environmental Impact Assessment......290

22.1	Introduction	290
	Definition	290
	Evolution	290
	Purpose	292
	EIA in India	292
	EIA Notification 2020	293
	Importance of EIA	293
	Environment Clearance (EC)	293
	New Categorisation of Industries	295
	Components of EIA	296
	Process and Procedure of EIA	297
	Advantages of EIA	298
	Limitations of EIA	299
	Way Forward	299
22.2	Strategic Environmental Assessment (SEA)	300
	Rationale and Scope	300
	Benefits	301
	Constraints	301
	Conclusion	301
22.3	Environmental Auditing	301
	Meaning	301
	Objectives	301
	Scope	301
	Benefits	301

Chapter - 23

Envi	ronmental Ethics	303
23.1	Introduction	
23.2	Importance of Environmental Ethics	

23.3	Approaches to Environmental Ethics	. 303
23.4	Features of Environmental Ethics	. 303
23.5	Corporate Environment Ethics	. 304
23.6	Environmental Ethics: Issues in India	. 304
	Consumption Pattern and Equitable Utilization	. 304
	Gender Equity	. 305
	Preserving Resources for Future Generations	. 305
	Rights of Animals	. 305
	Environmental Awareness	. 305
23.7	Indian Tradition of Harmonious Living with Nature	. 305
23.8	Framework to Uphold Environmental Ethics in India	. 306
	Environment and Indian Constitution	. 306
	Legislations on Environment Protection	. 306
	Judiciary and Environmental Protection	. 307
	Other Government Steps and Initiatives	. 308
23.9	Inculcating Environmental Ethics	. 308
23.10	Influence of Gandhiji on Environment Conservation	. 308
23.11	Conservation Movement and Public Participation	. 309

PART-VII: MISCELLANEOUS

Recent Developments	311
Panchamrit Strategy	311
Lifestyle for the Environment (LiFE) Movement	311
Forest-Plus	311
Boat Labs (B4)	311
SUNREF (Sustainable Use of Natural Resources and Energy Finance)	311
Indian Tsunami Early Warning System (ITEWS)	312
Green Good Deeds Campaign	312
Rhododendron Park	312
Orang Tiger Reserve	312
Eco-bridges	312
Anti-smog Gun	312
Project MIDAS	312
Mosses as Bio-indicators	312

Management of Seagrass Beds in Palk Bay		L
Mangroves for the Future (MFF)		F
MISHTI scheme		C
Mangrove Alliance for Climate (MAC)		C
Monitoring the Illegal Killing of Elephants (MIKE)313	Т
Livelihoods and Landscapes Strategies		Т
Water and Nature Initiative (WANI)		E
Earth Overshoot Day		h
Green Growth		Ċ
Environmental Performance Index		Ċ
Svalbard Global Seed Vault		F
Indian Seed Vault		C
Gobardhan Scheme		V
Green Skill Development Programme		F
Climate Smart Agriculture (CSA)		
Climate Resilient Agriculture		
Zero Budget Natural Farming		C
Precision farming		F
Organic farming		T
Miyawaki Plantation Method		
Forest Fires		E
Blue Flag Certification		
Electronic Firecracker		Ν
Stubble Burning		Т
Crop Residue Management		Т
Straw Management System (SMS)		F
Bharat Stage (BS)-VI		C
South Asian Cooperative Environment Programmer	ne	F
(SACEP)		E
Vulture Crisis in India		E
Vertical Gardens		S
South Asia Wildlife Enforcement Network (SAWE	EN) 323	E
Coalition on Disaster Resilient Infrastructure (CE)RI) 323	C
Gaj Yatra		S
Coral lvf		F
Clean Air India Initiative		E
Indian Nitrogen Assessment		S
Petcoke		S
Safar		S

Livestock and Ghgs	324
Flash Flood Guidance System	325
Global Renewable Energy Atlas	325
Clean Ganga Fund (CGF)	325
TX2 - Tiger Population In Nepal	325
TX2	325
E-Eye	326
Integrated Development of Wildlife Habitats	326
Green Skill Development Programme (GSDP)	326
Green GDP	326
Hornbill Watch Initiative	327
Conference on "International Decade for Action: Water for Sustainable Development, 2018-2028"	327
Fish Losing Smelling Sense Due to Carbon Dioxide Level Rise	327
Online Continuous Emission Monitoring Systems	207
Colour Coding of Number Plates and Eucles in India	328
Benurnose Lised Cooking Oil (BLICO)	328
Total Polar Compounds (TPC)	328
Giant Sea Snail Plan to Rescue Barrier Reef	328
Fight Avian Species Declared "Extinct"	020
Olive Bidley Turtle	
Nesting Places	329
Thermo-sensitive Period	329
Turtle Excluder Devices	330
Role in Marine Ecosystem	330
Greater Adjutant	330
Planthopper	330
Blackbuck	330
Blue Whale	331
Salicornia	331
Brow-Antlered Deer (Sangai)	331
Cyanogenetic Plants	331
Silver Cultivation in Paddy Fields	331
Hoolock Gibbons	332
Bioluminescence	332
Scrub Typhus	332
Snow Leopard (Panthera uncia)	332
Spot-Billed Pelicans	333

White Tigers	333
Larvivorous Fishes	333
Poecilia reticulata or the Common Guppy	333
Advantages of Use of Larvivorous Fish	333
Characteristics of Larvivorous Fish	333
River Pollution	333
Nitrogen Pollution	333
The International Nitrogen Initiative	334
The Nitrogen Paradox	334
Upsetting the Balance	334
WAYU (Wind Augmentation Purifying Unit)	334
Taj Discolouration	335
Arsenic Pollution	335
Arsenic	335
Uranium Contamination	335
Environmental Refugee	336
"Dead Zone" in the Arabian Sea	336
'Green' Firecrackers	336
Supreme Court on Firecrackers	337
Pollinators in Decline - IPBES	337
Indian Long Term Ecological Observatories (I-LTEO)	337
Palau Bans Sunscreens Harmful to Corals	337
Unesco Removed the Belize Barrier Reef from its List	338
Micro-Plastics in Oceans	338
Biodegradable Microbeads	338
Bioplastics	338
Powering Past Coal Alliance	338
Gangetic Dolphins - Impact of Increase in Salinity	339
Gangetic River Dolphins	339
Critical Ecosystem Partnership Fund (CEPF)	339
Fly Ash in India	339
Fly ash utilisation rule for Thermal Power Plants(TPPs)	339
Sikkim Allows People to Forge Fraternal Ties with Trees	340
Glow-in-the-Dark Algae	340
Major initiatives in Solar Power	340
Solar City Programme	340
Bio-Digester Toilet	340
Advantages of Bio-toilet	341
Bunker Convention	341

International Convention for the Control and Management of Ships' Ballast Water and Sediments	. 341
Vinyl Floorings and Dioxins	. 342
Coastal Areas in Kerala Battered by Swell Waves	. 342
Indian National Centre for Ocean Information	
Services (INCOIS)	. 342
India Quake	. 342
Climate Vulnerable Forum	. 343
India Faces Worst Water Crises: Niti Aayog	. 343
Composite Water Management Index	. 343
An IPCC Special Report on the Impacts of Global Warming	. 343
India's First National Environment Survey in 2019	. 344
National Environment Survey	. 344
India Submits Sixth National Report to the Convention of Biological Diversity (CBD)	. 344
Biodiversity Finance Initiative - BIOFIN	. 344
Ozone Healing Confirmed in Montreal Protocol Assessment	. 345
Global Cooling Innovation Summit	. 345
Global Cooling Prize	. 345
India Cooling Action Plan	. 345
Talanoa Dialogue	. 345
World Resources Institute (WRI)	. 345
Sundarban Wetland Designated as a Wetland of	
International Importance	. 345
India Among Nations that Face Grave Danger to Soil Biodiversity: Wwf	. 346
The Sendai Framework	. 346
Champions of the Earth	. 346
Young Champions of the Earth	. 347
SEED Awards	. 347
Sasakawa Prize	. 347
Un Environment Award to India	. 347
India Biodiversity Awards, 2018	. 347
State Energy Efficiency Preparedness Index	. 348
Standards and Labelling Program	. 348
Deep Ocean Mission	. 348
Recovery Programme for Critically Endangered	. 348
ICFRE Inks two Mous to Launch Prakriti Programme	. 349
Prakriti	. 349

Green Buildings	. 349
Energy Conservation Building Code 2017 (ECBC 2017).	. 349
World's First Sovereign Blue Bond	. 349
Eco Sensitive Zones (ESZ)	. 350
Biodiversity in Silent Valley National Park	. 350
Ssb to Patrol Dudhwa National Park	. 350
Kaziranga National Park	. 351
Greater One-horned Rhinoceros	. 351
Indian Rhino Vision 2020	. 351
Orang Tiger Reserve	. 351
Bhitarkanika National Park	. 351
Natural World Heritage Sites in India	. 351
Mixed World Heritage Site in India	. 351
Green Bonds	. 351
SEBI and Green Bonds	. 352
Advantages of Green Bond	. 352
Clean Sea-2018	. 352
Indian Coast Guard (ICG)	. 352
Chiller Star Labelling Program	. 352
The Resource Efficiency Initiative (Rei) Project	. 352
Objectives of the Project	. 352
Contamination of Fish with Formalin	. 353
Detection of Contaminated Fish	. 353
National Symbols of India	. 353
Impact of COVID-19 on Forests	. 353
2 Plant Species now Extinct in the Wild	. 353
Expansion of Thar Desert	. 353
Two New Plant Varieties in Kerala	. 354

Aquamation	
Red Sanders	
2021 Sixth Warmest Year Since 1880	
Coastal Vulnerability Index by INCOIS	
Marine Pollution	354
India's Solar Power Energy Targets	355
Future Looms Dark for 48% of Bird Species	355
Slender Loris	
50 Years Since Stockholm Conference	355
LiFE Movement	
Rhino Reintroduction Success in Assam	
Spiny Horntail	
Four New Corals Recorded from Indian Waters	
Swachh Sagar, Surakshit Sagar Campaign	
Tasmanian Tiger	
Indian Virtual Herbarium	
CAG report on Coastal Ecosystem	
Nanoplastics	356

APPENDIX

-			
2			
<u>)</u>		APPENDIX	
3	Biosphere Res	erves of India	
3	National Parks	in India	
2	Ramsar Sites in	India	
, ,	Threatened Sp	ecies	
)	Biodiversity He	ritage Sites	
5	Coastal & Mari	ne Biodiversity Areas	
3	Marine Protect	ed Areas	
ŀ	World Heritage	Sites	

Biodiversity

Unit

3.	Biodiversity		36
4.	Faunal Diversity		49
5.	Floral Diversity	 	57

CHAPTER

BIODIVERSITY

3.1 Introduction

Biodiversity is the variety of all living things: the different plants, animals and microorganisms, the genetic information they contain and the ecosystems they form. The biodiversity we see today is the fruit of billions of years of evolution shaped by natural processes and, increasingly, by the influence of humans. It forms the web of life, of which we are an integral part and upon which we so fully depend.

Thousands of new species are discovered each year, but it will still take hundreds of years to find the rest.

3.2 Levels of Biodiversity

Three levels of biodiversity are generally accepted: genetic, species, and ecosystem. These levels are all interrelated yet distinct enough that they can be studied as three separate components.

Genetic Diversity

Genes are the basic unit of all life on Earth. Genetic diversity is the variety of genes within a species. Genetic diversity can be measured at many different levels, including population, species, community, and biome. E.g. Due to habitat fragmentation genetic diversity of Indian tigers have been reduced.

IMPORTANCE OF GENETIC DIVERSITY

Genetic diversity is important as it represents the **raw material for evolution and adaptation.** More genetic diversity in a species or population means a greater ability for some of the individuals in it to adapt to changes in the environment. Less diversity leads to uniformity, which is a problem in the long term, as it is unlikely that any individual in the population would be able to adapt to changing conditions.

For **Example:** Modern agricultural practices use monocultures, which are large cultures of genetically identical plants. Though it is advantageous for growing and harvesting crops, it can be a problem when a disease or parasite attacks the field, as every plant in the field will be susceptible. Also, Monocultures are unable to adapt well with changing conditions.

Level of Biodiversity

Species Diversity

Species diversity is the variety of species within a habitat or a region. Some habitats, such as rainforests and coral reefs, have high species diversity. For Example, colder regions support less species diversity than the warmer regions. Also, good climate with good physical geography supports better species diversity. *Simposn's diversity index* is often used to quantify the biodiversity of a habitat. According to this index, zero represents infinite diversity, whereas one represents only one species dominating the landscape and no diversity.

Invertebrates - animals without backbones - make up about 99% of all animal species, and most of these are insects. Invertebrates include crabs, snails, worms, corals and seastars, as well as insects, such as beetles and flies. Insects fill many vital roles in ecosystems as pollinators, recyclers of nutrients, scavengers and food for others.

There are two levels of species diversity:

- **Regional Diversity** of whole nations or parts of continents within which many different communities exist
- **Local Diversity** in a given nation where different communities exist at different latitudes.

Ecosystem Diversity

Ecosystem diversity is the variety of ecosystems at a given place. It incorporates both habitat and community diversity. This is the least-understood level of the three described diversities due to the complexity of the interactions. Inherent in ecosystem diversity are thus both biotic (living) and abiotic (non-living) components, which makes it different from both genetic and species diversity. As the environment changes, the species best adapt to itself according to the environment thus the diversity of the species in an ecosystem is influenced by the ecosystem itself.

3.3 Measurement of Biodiversity

Biodiversity is defined and measured as an attribute that has two components — richness and evenness.

Richness

Richness is expressed as the number of species and is usually called species richness. Here individuals are genetically or functionally related.

Evenness

Evenness is proportions of species or functional groups present on a site. The more equal species are in proportion to each other, the greater the evenness of the site. A site with low evenness indicates that a few species dominate the site.

Species diversity is a measurement of species richness and species evenness. It is a measurement of species richness combined with evenness, meaning it takes into account not only how many species are present but also how evenly distributed the numbers of each species are.

For example, if two communities both have five species, species richness would be five for both communities. If the first community had 100 individuals and 80 of them were all one species, this would not be a community with a very even distribution. If the second community had 100 individuals, with 20 individuals belonging to each of the five species, this community would be more evenly distributed. Because it was more evenly distributed, community two would have a greater species diversity.

R H Whittaker classified the spatial component of biodiversity into alpha, beta, and gamma diversity. These are defined below:

- Alpha Diversity: Alpha diversity refers to the diversity within a particular area or ecosystem, and is usually expressed by the number of species (i.e., species richness) in that ecosystem.
- Beta Diversity: It refers to the change in species diversity between two ecosystems. E.g. Measuring species diversity between the grassland and terrain ecosystem.

 Gamma Diversity: Gamma diversity is a measure of the overall diversity for the different ecosystems within a region. Gamma diversity can also be defined as "geographic-scale species diversity.

3.4 Patterns of Biodiversity

As ecologists studied biodiversity in the environment, they observed a regular pattern in which diversity was distributed over the entire area of the planet. Ecologists discovered two broad kinds of diversity patterns, namely Latitudinal diversity gradient and Species-Area Relationship.

Latitudinal Diversity Gradient

According to the Latitudinal Diversity Gradient (LDG), the species diversity follows a regular pattern as we move from the equator to the polar regions. The plant and animal diversity observed to be maximum at the equator and it decreases as we move towards the poles. This increase in species richness is called Latitudinal Diversity Gradient.

India, located at the tropical regions, shows high species richness. However, the great Amazon rainforests show maximum biological diversity in terms of the number of species residing in that region.

Species-Area Relationship

The species-area relationship is one of the oldest known and most documented patterns in ecology. It describes the general pattern of increase in species richness with increasing area of observation The relationship between island area and number of species is well known i.e. larger islands contain more species than smaller islands.

Note: "Islands" can be used to refer not only to pieces of land surrounded by water, but to habitat islands as well (lakes, forest fragments, etc.)

The basic idea of the model is that the number of species on an island is determined by the immigration of new species and the extinction of species already present; when these two rates balance one another, the species number is at equilibrium. In general, it has been found that the relationship between island area and number of species present is fairly constant for islands in a given geographic region. For conservation planning, knowledge of this relationship is of utmost importance.

3.5 Biodiversity Hotspots

Biodiversity Hotspot as an idea was first developed by *Norman Myers* in 1988. It is a biogeographic region that is both a significant reservoir of biodiversity and is threatened with destruction. Conservation International adopted Myers' hotspots as its institutional blueprint in 1989, and in 1999, the organization undertook an extensive global review which introduced quantitative thresholds for the designation of biodiversity hotspots.

Currently, 36 biodiversity hotspots have been identified, most of which occur in tropical forests. They represent just 2.3% of Earth's land surface, but between them they contain around 50% of the world's endemic plant species and 43% of all terrestrial vertebrates.

Criteria for Measuring Biodiversity Hotspots

To qualify as a biodiversity hotspot, a region must meet two strict criteria:

- It must have at least 1,500 vascular plants as endemics (> 0.5% of the world's total) — i.e. it must have a high percentage of plant life found nowhere else on the planet. A hotspot, in other words, is irreplaceable.
- It must have 30% or less of its original natural vegetation (it has to have lost 70% of its original native habitat). In other words, it must be threatened.

Out of the 36 globally identified biodiversity hotspots, India harbours four hotspots, i.e., **Himalaya, Western Ghats and Sri Lanka, Indo-Burma and Sundaland.**

Ecology & Environment

Criteria for Biodiversity Hotspot

ATTRIBUTES OF INDIAN BIODIVERSITY HOTSPOTS					
S.	Attributes			Hotspots	
NO.		Himalaya	Indo-Burma	W. Ghats & Sri Lanka	Sundaland
1.	Hotspot original extent (km ²)	741,706	2,373,057	189,611	1501,063
2.	Hotspot vegetation remaining (km ²)	185,427	118,653	43,611	10,0571
3.	Endemic plant species	3160	7,000	3,049	15,000
4.	Endemic threatened birds	8	18	10	43
5.	Endemic threatened mammals	4	25	14	60
6.	Endemic threatened amphibians	4	35	87	59
7.	Extinct species*	0	1	20	4
8.	Human population density (people/km ²)	123	134	261	153
9.	Area protected (km ²)	112.578	235,758	26,130	179,723
10.	Area protected (km ²) in categories I-IV**	77,739	132,283	21,259	77,408
*Reco	*Recorded extinction since 1500., **Categories I-IV afford higher levels of protection.				

3.6 Sources of Biodiversity

Mutation

Mutations increase genetic diversity by altering the genetic material (mostly DNA) of organisms. Although this gives rise to differences in organisms, it is an extremely slow process compared to the other ways in which local diversity increases.

Speciation

The creation of a new species is known as speciation. It occurs when groups in a species become reproductively isolated and diverge. Species are typically defined as being unable to successfully breed with other species (the so-called Biological Species Concept), although there are other ways of defining species. Speciation can occur through several different means, including geographical isolation, competition, and polyploidy.

These are described as:

- **Geographical Isolation:** Geographical isolation, such as new mountain chains etc can divide a population into two separate populations. The two isolated populations continue to evolve separately from one another. Eventually they can diverge to a great enough degree that they are no longer able to interbreed and are considered to be different species.
- Competition: If a new resource, such as a new food source, becomes available to a population, some part of the population may become specialized in obtaining that resource. In time, there is a chance that the population will become totally different from the original population.
- **Polyploidy:** Polyploidy is a condition in which the cells of an organism have more than one pair of chromosomes. Speciation through polyploidy happens far more often in plants than in animals, as animals are much more sensitive to large changes in their genetic structure. This method of speciation is almost instantaneous, happening in a single generation.

Immigration

Immigration increases diversity as new individuals and perhaps even new species enter an area, increasing its diversity. The rate at which immigration happens depends on the size of the area in question, how many species are there already, and how close the area in question is to the source of immigration.

Succession

Succession is the process through which an area gains species as successive communities of organisms replace one another until an end-point is reached.

3.7 Loss of Biodiversity

Biodiversity does go through changes through time i.e. numbers of species present on earth changes over time and the composition of species changes as well. For example, there are no dinosaurs left on the planet today, but we know that at one point in the past they thrived. That is an example of change in biodiversity.

Unfortunately, human activity is causing plants and animals to go extinct at rapid rates, and causing the ranges of other species to be drastically reduced. By some estimates, the rate of extinction is now many times greater than the natural rate because of anthropogenic activities and the associated climate changes. Due to these biodiversity losses, the present time is often called "The Sixth Mass Extinction" with reference to biodiversity loss.

Causes of Biodiversity Loss

There are various causes of loss of Biodiversity and most of them emanates from the action of human beings. Some of them are:

Important factors responsible for the loss of biodiversity

- Habitat Destruction: Habitat Destruction happens whenever humans change a landscape and modify the ecosystem that resides there. Habitat loss is caused by deforestation, mining, industrial expansion, overpopulation, pollution and global warming.
 For example: Destruction of Elephant corridors in Chotanagpur region due to the extensive mining.
- **Invasive Species Introductions:** Invasive species competes for food with the native species and also alters the structure of the habitat, threatening natives species. For example: Lantana camara, Water hyacinth proliferation in the water bodies of Assam.
- Climate Change: Changes in climate have altered life on Earth. Ecosystems have come and gone and species routinely go extinct. But rapid, manmade climate change speeds up the process, without affording ecosystems and species the time to adapt. Consequently, many species are not able to cope, causing them to die out. For example: Ocean acidification results in coral bleaching.
- Overexploitation of Resources: Activities like over hunting, overfishing and over-harvesting contribute greatly to the loss of biodiversity, killing off numerous species over the past several hundred years. Poaching and other forms of hunting for profit increase the risk of extinction, the extinction of an apex predator or, a predator at the top of a food chain can result in catastrophic consequences for ecosystems.
- **Pollution:** Pollution is a major threat to biodiversity. Industrial, agricultural and waste-based pollutants

can have catastrophic effects on many species. Apart from habitat destruction, pollution poses long-term cumulative impacts on the species health, contributing to their eventual death. For instance, marine and freshwater life forms are most affected by pollution. For example: Thermal power plant – discharging the high temperature coolant water into the marine region causing thermal pollution in marine ecosystem.

Consequences of Biodiversity Loss

Biodiversity loss has a negative impact on our societies. It negatively affects or contributes to the health of individuals, the climate, natural resources, pollution, poverty and the extinction of species.

According to the IUCN red list 784 species have got extinct in past five hundred years.

- Economic Cost: In terms of ecosystem services functions like pollination, irrigation, soil reclamation and other things that would have to be paid for if nature couldn't take care of it on its own – the value of global biodiversity has been estimated in the trillions of dollars.
- Reduced Food Security: Biodiversity is essential for food security and nutrition. With the erosion of biodiversity, humankind loses the potential to adapt ecosystems to new challenges such as population growth and climate change. Achieving food security for all is intrinsically linked to the maintenance of biodiversity.
- **Increased Contact with Disease:** The loss of biodiversity has two significant impacts on human health and the spread of disease.
- Loss of Livelihoods: From fishermen to farmers, biodiversity not to mention healthy ecosystems – is essential for maintaining livelihoods. When ocean ecosystems collapse, for example, entire communities built on the bounty they provide fold as well. Whether the cause is pollution, overfishing, ocean acidification, or a combination of these and more, humans are tied to the downfall of the ecosystems that surround them.

3.8 **Biodiversity Conservation**

Conservation of Biodiversity is the protection, preservation, management, or restoration of wildlife and their natural habitats such as forests and water. Through the conservation of biodiversity, survival of many species and habitats which are threatened due to human activities can be ensured.

Need to Conserve Biodiversity

Biodiversity is of great importance in order to maintain stable ecosystems.

The destruction of ecosystems can have a catastrophic effect both on local and global levels. E.g.: Rainforests, contribute both to the process of soil formation and help to regulate the climate through photosynthesis – by producing oxygen and absorbing carbon dioxide. Wetlands act as sponge-like reservoirs in dry weather and help to filter and purify water. Coral reefs and mangrove swamps protect the land that they surround by reducing the effects of erosion and also acts as first line of defence during disaster like Tsunamis, Storm surge etc.

Conservation Methods of Biodiversity

In Situ-Conservation

In-situ conservation can either be targeted at populations of selected species (species-centered) or whole (ecosystembased). It involves the conservation strategies to be followed in the habitat of the concern species. ecosystems

Methods of Biodiversity conservation

Some of the Protected Areas designed for In-Situ conservation are:

National Parks

They are the areas that are set by the Government to conserve the natural environment under **Wild Life Protection Act, 1972**. A national park has more restrictions as compared to a wildlife sanctuary. Their boundaries are fixed and defined. The main objective of a national park is to protect the natural environment of the area and biodiversity conservation. **National parks** can be declared both by the Central Government and State Governments. No alteration of the boundaries of a national park shall be made except on a resolution passed by the State Legislature. They cannot be downgraded to the status of a 'sanctuary'.

No human activities are allowed inside National Parks. Grazing of livestock and private tenurial rights are not permitted here. Species mentioned in the Schedules of the Wildlife Act are not allowed to be hunted or captured. No person shall destroy, remove, or exploit any wildlife from a national park or destroy or damage the habitat of any wild animal or deprive any wild animal of its habitat within a national park.

Wildlife Sanctuaries

They are declared by state Government under **Wild Life Protection Act, 1972.** A wildlife sanctuary is an area of nature owned by the Government or a private agency for the protection of particular species of flora or fauna during a part of the year or in its entirety. *Human activities like harvesting of timber, collecting minor forest products and private ownership rights are allowed as long as they do not interfere with the well-being of animals.* Boundaries of sanctuaries are not well defined and controlled biotic interference is permitted. For example: Keoladeo National Park before attaining the status of a National Park was called as Bharatpur Bird sanctuary.

Often, National Park is considered synonymous to Wildlife Sanctuary, as it is also declared reserved for the protection and development of wild life. However, they are different. The main difference between the two is that in a sanctuary, some other activities may be allowed, whereas in a National park no other activities are allowed. For example, the people may possess rights for timber extraction in a wildlife sanctuary, but this right is not provided under the premises of a national park.

Conservation Reserves

Conservation Reserves are introduced **under the Wildlife** (Protection) Amendment Act of 2002 – the amendment to the Wildlife Protection Act of 1972. It is an area owned by the state Government adjacent to the national parks and sanctuaries for protecting the landscape, seascape, and habitat of fauna and flora. It is managed through a conservation reserve management committee.

The **State Government** may, after having consultations with the local communities, declare any area owned by the Government as a conservation reserve. *Tiruppadaimarathur Conservation Reserve* in Tirunelveli, Tamil Nadu is the *first conservation reserve* established in the country in 2005. It is an effort of the village community to protect the birds nesting in their village and acted for declaration of conservation reserve.

Community Reserves

Community Reserves are introduced **under the Wildlife** (Protection) Amendment Act of 2002, the amendment to the Wildlife Protection Act of 1972. The state Government may notify any community land or private land as a community reserve, provided that the members of that community or individuals concerned are agreeable to offer such areas for protecting the fauna and flora, as well as their traditions, cultures and practices.

The declaration of such an area is aimed at improving the socio-economic conditions of the people living in such areas as well as conserving wildlife. The reserve is managed through a community reserve management committee. The state Government may, where the community or individual has volunteered to conserve wildlife and its habitat, declare the area by notification as community reserve.

No change in land use pattern shall be made within the community reserve, except in accordance with a resolution passed by the management committee and approval of the same by the state Government.

Biosphere Reserves

Biosphere reserves are areas of terrestrial, marine and coastal ecosystems which promote the conservation of biodiversity with its sustainable use. Biosphere Reserve are integral components of the internationally recognized framework of UNESCO's Man and Biosphere (MAB) programme initiated in 1971 and they are nominated by national Governments. There are over 500 biosphere reserves in over 100 countries around the world.

Criteria

The core area should be typical of a bio-geographical unit and large enough to sustain viable populations representing all trophic levels in the ecosystem.

A site that must contain an effectively protected and minimally disturbed core area of value of nature conservation.

Areas potential for preservation of traditional tribal or rural modes of living for harmonious use of environment.

The management authority to ensure the involvement/ cooperation of local communities to bring variety of knowledge and experiences to link biodiversity conservation and socio-economic development while managing and containing the conflicts.

Structure of Biosphere Reserve

• **Core Zone:** Core zone must contain suitable habitat for numerous plant and animal species, including higher order predators and may contain centres of endemism. **Core area is a legally protected** area

where human intervention is strictly prohibited. It also represent important genetic reservoirs having exceptional scientific interest. A core zone being mostly protected under the Wildlife (Protection) Act, 1972.

- Buffer Zone: The buffer zone surrounds the core zone. The uses and activities are managed in this area in the ways that help in protection of core zone in its natural condition. These uses and activities include restoration, demonstration sites for enhancing value addition to the resources, limited recreation, tourism, fishing, grazing, etc; which are permitted to reduce its effect on core zone. Research and educational activities are to be encouraged. Human activities for research and educational purposes within Biosphere Reserve, are likely to continue if these do not adversely affect the ecological diversity and conservation objectives.
- **Transition Zone:** It is the outermost part of a biosphere reserve. This is usually not delimited one and is a **zone of cooperation** where conservation knowledge and management skills are applied and uses are managed in harmony with the purpose of the biosphere reserve. This includes settlements, crop lands, managed forests and area for intensive recreation and other economic uses characteristics of the region.

There are 18 notified Biosphere reserves in India. Out of them, **12 Biosphere Reserves are in the UNESCO's MAB World Network**. These Biosphere Reserves and their respective years of including in MAB network are as follows: *Nilgiri (2000), Gulf of Mannar (2001), Sunderban (2001), Nanda Devi (2004), Nokrek (2009), Pachmarhi (2009), Similipal (2009), Achanakmar-Amarkantak Biosphere Reserve (2012), Great Nicobar Biosphere Reserve (2013), Agasthyamala Biosphere Reserve (2016), Khangchendzonga Biosphere Reserve, Sikkim (2018) and Panna Biosphere Reserve Madhya Pradesh, (2020).*

NATIONAL PARK/SANCTUARIES AND **BIOSPHERE RESERVES: A COMPARISON** National Park/Sanctuaries **Biosphere Reserves** National Parks. Wildlife There is no law as Sanctuaries. Conservation such under which Biosphere Reserves are Reserves. Community Reserves and Tiger established. Reserves are established as per provisions of Wildlife Protection Act, 1972 No grazing or private tenurial Biosphere reserves serve rights land rights are allowed 'living laboratories' as in National Parks. Limited for testing out and economic activity (sand and demonstrating integrated stone mining) is permitted in management of land. biosphere reserves water and biodiversity. Wildlife sanctuaries and Biosphere reserves national parks are set up for envisage protection the protection of mammals of plant species. normally Invertebrates and biotic community as a whole

Sacred Groves

Sacred groves comprise of patches of forests or natural vegetation – from a few trees to forests of several acres – that are usually dedicated to local folk deities (Example – Ayyanar and Amman) or tree spirits (Vanadevatais). These spaces are protected by local communities because of their religious beliefs and traditional rituals that run through several generations.

The degree of sanctity of the sacred forests varies from one grove to another. For example, the Garo and the Khasi tribes of northeastern India completely prohibit any human interference in the sacred groves. The Gonds of central India prohibit the cutting of a tree but allow fallen parts to be used. Although there has been no comprehensive study on the sacred groves of the entire country, experts estimate the total number of sacred groves in India could be in the range of 100,000 – 150,000. These are categorized into:

- Traditional Sacred Groves (It is the place where the village deity resides, who is represented by an elementary symbol).
- *Temple Groves* (created around a temple and conserved, and groves around the burial or cremation grounds).

Significance of Sacred Groves

The sacred groves are important repositories of floral and faunal diversity. They also act as a rich gene pool including rare, threatened and endangered species. The groves are often associated with ponds, streams or springs, which help meet the water requirements of the local people. The vegetative cover also helps in the recharging the aquifers. The vegetation cover of the sacred groves improves the soil stability of the area and also prevents soil erosion. They have medicinal use as it is a repository for plants with Ayurvedic properties.

In modern times, they have become biodiversity hotspots due to progressive habitat destruction in neighbouring areas. Sacred groves in urban landscapes act as 'lungs' to the city as well. Threats to Sacred groves includes Urbanization and encroachment, Over-exploitation of resources like overgrazing and excessive firewood collection, Religious practices; clearing them for construction of shrines and temples, Invasion by invasive species.

Ex-Situ Conservation Methods

Ex-situ conservation is the preservation of components of biological diversity outside their natural habitats. This involves conservation of genetic resources, as well as wild and cultivated or species, and draws on a diverse body of techniques and facilities.

Reintroduction of an animal or plant is a type of Ex-Situ conservation method e.g. Gangetic gharial has been reinduceed in the rivers of Madhya Pradesh, Uttar Pradesh and Rajasthan, where they were extinct earlier.

Botanical Gardens

Botanic gardens are institutions holding documented collections of living plants for the purposes of scientific research, conservation, display and education. They are one of the most popular methods for ex-situ conservation. The Conservation is being realized by means of seeds, cuttings, and tissue or cell cultures and should secure genetically representative permanent collections for conservation, (re-) introduction, research, and education.

Zoological Parks

It is a facility in which animals are housed within enclosures, displayed to the public, and in which they may also breed. The breeding of endangered species is coordinated by cooperative breeding programmes containing international studbooks and coordinators, who evaluate the roles of individual animals and institutions from a global or regional perspective, and there are regional programmes all over the world for the conservation of endangered species.

Seed Banks/Gene Banks

A seed bank stores seeds under specific conditions to preserve genetic diversity; hence it is a type of gene bank. Seed banking has considerable advantages over other methods of ex situ conservation such as ease of storage, economy of space, relatively low labour demands and consequently, the capacity to maintain large samples at an economically viable cost. There are many reasons to store seeds. One reason is to have the genes that plant breeders need to increase yield, disease resistance, drought tolerance, nutritional quality, taste, etc. of plants used in agriculture (i.e., crops or domesticated species). Another reason is to forestall the loss of genetic diversity in rare or imperiled plant species in an effort to conserve biodiversity ex-situ.

Cryopreservation

Cryopreservation or cryoconservation is a process where organelles, cells, tissues, extracellular matrix, organs or any other biological constructs susceptible to damage caused by unregulated chemical kinetics are preserved by cooling to very low temperatures (typically -80 °C using solid carbon dioxide or -196 °C using liquid nitrogen). At low enough temperatures, any enzymatic or chemical activity which might cause damage to the biological material in question is effectively stopped. Cryopreservation is a useful method for long-term storage of germplasm, especially for plant species that are difficult to conserve as seeds due to low desiccation tolerance.

For aquatic species, cryopreservation has limited application because female gametes and fertilized eggs usually cannot be frozen. For livestock, the term "cryoconservation" is often used to refer to cryopreservation of germplasm for the purpose of genetic conservation, whereas cryopreservation refers to the actual freezing technology and its general application. This distinction is more relevant for livestock than for other sectors because cryopreservation is more widely applied for uses other than conservation.

Cryopreservation can be used for

- Conservation of plant germplasm
 - Vegetative propagated species (root and tubers, ornamental, fruit trees)
 - Recalcitrant seed species (Howea, coconut, coffee)
 - Conservation of tissue with specific characteristics
 - Medicinal and alcohol producing cell lines
 - Genetically transformed tissues
 - Transformation/ Mutagenesis competent tissues (ECSs)
- Eradication of viruses (Banana, Plum)
- Conservation of plant pathogens (fungi, nematodes)

Constraints in Biodiversity Conservation

- Rising Human Population which inevitably results in human-animal Conflict by fragmentation and destruction of habitats.
- Socio-Economic inequality, which results in unsustainable harvesting of biological resources by the wealthy sections of society violating the basic access rights of the poor.

Ecology & Environment

NEXT IRS

- Lack of capital & technology with the poor and developing countries, which are often the hotspots of biodiversity.
- Difficulty in determining economic value of biodiversity, which often results in it getting less importance in highlevel policy making.

3.9 Wetlands

Wetlands are areas where water is the primary factor controlling the environment and the associated plant and animal life. They occur where the water table is at or near the surface of the land, or where the land is covered by water. Once treated as transitional habitats or seral stages in succession from open water to land, the wetlands are now considered to be distinct ecosystems with specific ecological characteristics, functions and values.

Ramsar Convention on Wetlands define wetlands as: "areas of marsh, fen, peat-land or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, including areas of marine water the depth of which at low tide does not exceed six meters".

Importance of Wetlands

Wetlands are a critical part of our natural environment and are vital for human survival. They are among the world's most productive environments; cradles of biological diversity that provide the water and productivity upon which countless species of plants and animals depend for survival. Wetlands are indispensable for the countless benefits or "ecosystem services" that they provide humanity, ranging from freshwater supply, food and building materials, and biodiversity, to flood control, groundwater recharge, and climate change mitigation.

They protect our shores from wave action, reduce the impacts of floods, absorb pollutants, improve water quality and mitigate the effects of natural disasters like cyclones and tidal waves. They provide habitat for animals and plants and many contain a wide diversity of life, supporting plants and animals that are found nowhere else. They are the vital link between land and water. Wetland systems, directly and indirectly, support lakhs of people, providing goods and services to them.

Their capacity during heavy rainfall to retain excess floodwater that would otherwise cause flooding results in maintaining a constant flow regime downstream, preserving water quality and increasing biological productivity for both aquatic life as well as human communities of the region. Inundated wetlands are very effective in storing rainwater and are the primary source for recharging groundwater aquifers.

Many wading birds and waterfowl like egrets, herons and cranes nest in wetlands. Wetlands also provide food and shelter for mammals. They act as natural filters and help remove a wide range of pollutants from water, including harmful viruses from sewage and heavy metals from industries. Wetlands retain nutrients by storing eutrophic parameters like nitrogen and phosphorus and accumulating them in the sub-soil, thereby decreasing the potential for eutrophication.

Threats to Wetlands

The Wildlife Institute of India's survey reveals that 70-80% of individual freshwater marshes and lakes in the Gangetic flood plains have been lost in the last five decades. At present, only 50 percent of India's wetlands remain. They are disappearing at a rate of 2% to 3% every year. Some of the responsible factors are:

- Urbanization: Wetlands near urban centers are under increasing developmental pressure for residential, industrial and commercial facilities. Urban wetlands are essential for preserving public water supplies. E.g. Bellandur Lake, Bengaluru.
- Anthropogenic Activities: Due to unplanned urban and agricultural development, industries, road construction, impoundment, resource extraction and dredge disposal, wetlands have been drained and transformed, causing substantial economic and ecological losses in the long term. E.g. Great Lakes of USA.
- Agricultural Activities: Following the Green Revolution of the 1970s, vast stretches of wetlands have been converted to paddy fields. Construction of a large number of reservoirs, canals and dams to provide for irrigation significantly altered the hydrology of the associated wetlands. E.g. Shahpura Lake of Bhopal.
- Hydrologic Activities: Construction of canals and diversion of streams and rivers to transport water to lower arid regions for irrigation has altered the drainage pattern and significantly degraded the wetlands of the region.

Functions of Wetlands

- Water Purification: They help in improving water quality through removing or retaining inorganic nutrients or by processing organic wastes and reducing suspended nutrients.
- Role in the Hydrologic Cycle: Wetlands receive, store and release water in various ways and thus play a very important role in the hydrologic cycle.
- Processing of Carbon and Other Nutrients: Wetlands are very important for the process of the biogeochemical cycle which involves the physical, chemical, and biological transformation of various nutrients within biota, soils, water, and air. They provide the conditions needed for the removal of nitrogen and phosphorus from surface water.
- Stabilization of Shorelines: As they are generally located at the margins of lakes, bays, rivers, and oceans, they protect the shorelines and stream banks against erosion. The plants and trees in the wetlands hold the soil with their roots, absorb the energy of waves and break up the flow of streams or currents.
- Atmospheric Maintenance: They store carbon within their living and preserved plant biomass instead of releasing it into the atmosphere as carbon dioxide and thus help in moderating the global climate.
- Deal with Environmental Problems: Wetlands help in reducing environmental problems such as algal blooms, dead zones, and fish kills that are generally related to nutrient overloading.
- Maintaining Water Supply: Wetlands help in maintaining streamflow during dry periods and replenishing groundwater thus maintaining the water supply.
- Habitat for Various Organisms: Wetlands act as habitats for fish, wildlife, and plants. Many species of plants and animals depend on wetlands for their survival. Wetlands act as primary habits and seasonal habits for many animal species.
- Prevention from Flood: As they have a low topographic position, they store and slowly release surface water, rain, snowmelt, groundwater, and floodwaters. Wetland vegetation also obstructs the movement of floodwater and distributes them more slowly over floodplains. Wetlands also prevent waterlogging of agricultural lands.
- Economic Benefits: Wetlands support many plant species that have medicinal value. They are a source of timber in many areas. Similarly, many plants like

blueberries, mints, and wild rice are produced in wetlands. Many countries have their fishing and shellfishing industries dependent on wetlands. Wetlands are also home to many animals having commercial value.

- Source of Livelihood for Local People: Wetlands also serve the needs of local people living in that area. Many people depend on wetlands for various things that have commercial value and it thus helps in satisfying their daily needs.
- Provide Opportunities for Recreation, Education, Research, and Aesthetic Activities: Wetlands act as grounds for research and recreation. Many people who love birdwatching or wildlife photography visit these habitats to have a view of various species.

Conservation of Wetlands

The Convention on Wetlands of international importance especially as Waterfowl Habitat (the Ramsar Convention) was signed in Ramsar, Iran, on 2 February 1971, and came into force on 21 December 1975. It is an intergovernmental treaty that provides the framework for national action and international cooperation for the conservation and wise use of wetlands and their resources. The Convention provides a framework for national action and international cooperation for the conservation and mise use of wetlands and their resources. The Convention provides a framework for national action and international cooperation for the conservation and wise use of wetlands and their resources. Originally emphasizing on the conservation and wise use of wetlands primarily to provide a habitat for water birds, the Convention has subsequently broadened its scope to address all aspects of wetland conservation.

Currently, there are 169 parties to Ramsar Convention. Under the "three pillars" of the Convention, the Contracting Parties commit to:

- Work towards the wise use of all their wetlands;
- Designate suitable wetlands for the list of Wetlands of international importance (the "Ramsar List") and ensure their effective management;
- Cooperate internationally on transboundary wetlands, shared wetland systems and shared species.
- Currently India has 75 Ramsar sites.

MONTREUX RECORD

 Montreux Record under the Convention is a register of wetland sites on the List of Wetlands of international importance where changes in ecological character have occurred, are occurring, or are likely to occur as a result of technological developments, pollution or other human interference. It is maintained as part of the Ramsar List.

• Montreux Record is employed to identify priority sites for positive national and international conservation attention. Sites may be added to and removed from the record only with the approval of the Contracting Parties in which they lie.

WORLD WETLAND DAY

World Wetlands Day which is celebrated each year on February 2. It marks the date of the adoption of the Convention on Wetlands on 2 February 1971, in the Iranian city of Ramsar on the shores of the Caspian Sea. Each year since 1997, Government agencies, non-Governmental organizations, and groups of citizens at all levels of the community have taken advantage of the opportunity to undertake actions aimed at raising public awareness of wetland values and benefits in general and the Ramsar Convention in particular.

	TRY SOME PRELIMS PRE	EVIOUS YEAR QUESTIONS
1.	Consider the following pairs: Wetland/Lake - Location	(c) 1 and 3 only (d) 1, 2 and 3
	 Hokera Wetland - Punjab Renuka Wetland – Himachal Pradesh Rudrasagar Lake - Tripura Sasthamkotta Lake - Tamil Nadu 	(2021) Ans. (d) 4. Which of the following can be threats to the biodiversity of a geographical area?
	How many pairs given above are correctly matched?are correctly(a) Only one pair(b) Only two pairs(c) Only three pairs(d) All four pairs	 Global warming Fragmentation of habitat Invasion of alien species Promotion of vegetarianism
Ans.	(b)	Select the correct answer using the codes given below:
2.	"If rainforests and tropical forests are lungs of the Earth, then surely wetlands function as its kidneys," Which are of the following functions of	(a) 1, 2 and 3 only (b) 2 and 3 only (c) 1 and 4 only (d) 1, 2, 3 and 4 (2012)
	wetlands best reflects the above statements?	Ans. (a)
	 (a) The water cycle in wetlands involves surface runoff, subsoil percolation and evaporation. (b) Algae form the nutrient base upon which fish, crustaceans, molluscs, birds, reptiles and mammals thrive. (c) Wetlands play a vital role in maintaining sedimentation balance and soil stabilisation. (d) Aquatic plants absorb heavy metals and excess nutrients. 	 The "Red Data Books" published by the International Union for Conservation of Nature and Natural Resource (IUCN) contain lists of Endemic plant and animal species present in the biodiversity hotspots. Threatened plant and animal species. Protected sites for conservation of nature and natural resources in various countries.
• • • •	(2022)	Select the correct answer using the codes given below:
апs. 3.	Which of the following have species that can establish a symbiotic relationship with other	(a) 1 and 3 (b) 2 only (c) 2 and 3 (d) 3 only
	organisms? 1. Cnidarians	Ans (b)
	 2. Fungi 3. Protozoa Select the correct answer using the code given below (a) 1 and 2 only (b) 2 and 3 only 	 6. Which one of the following is not a site for the insitu method of conservation of flora? (a) Biosphere Reserve (b) Botanical Garden